Progress in fabrication of anisotropic Bragg gratings fabricated in lithium niobate via femtosecond laser micromachining

Sundeep Jolly, Nickolaos Savidis, Bianca Datta, Thrasyvoulos Karydis, Will Langford, et al.
Progress in fabrication of anisotropic Bragg gratings in lithium niobate via femtosecond laser micromachining

Sundeep Jollya, Nickolaos Savidisb, Bianca Dattaa, Thrasyvoulous Karydisb, Will Langfordb, Neil Gershenfeldb, and V. Michael Bove, Jr.a

aMIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
bCenter for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA, United States

ABSTRACT

We have previously introduced a femtosecond laser micromachining-based scheme for the fabrication of anisotropic waveguides and isotropic Bragg reflection gratings in lithium niobate for application in future integrated-optic spatial light modulators. In this paper, we depict progress in fabrication and characterization of anisotropic Bragg reflection gratings fabricated in lithium niobate via Type I femtosecond laser-based permittivity modulation. We furthermore depict an electromagnetic analysis of such multilayer grating structures based around coupled-wave theory for thick holographic gratings.

Keywords: holography, near-to-eye display, waveguide optics

1. INTRODUCTION

Figure 1. x – y cross-section (side view) of proposed guided optical wave SAW device with integrated Bragg gratings.

Lithium niobate (LiNbO₃) is an important synthetic crystalline material widely used for applications in integrated and nonlinear optics. Traditional processing schemes for the generation of integrated photonic structures within LiNbO₃ substrates have typically included conventional resist-based photolithographic and electron-beam lithographic techniques alongside wet-1 or dry-etching.2 Furthermore, ion-diffusion techniques such as titanium indiffusion3 and proton exchange4 have yielded waveguide structures to great utility for the generation of active integrated acousto-optical5 and electro-optical6 devices.

Recently, direct laser writing has emerged as a promising alternative for the generation of embedded passive and active photonic structures within various optically transparent media.7 The use of femtosecond laser micromachining in LiNbO₃ has recently been proposed for fabrication of index-structures including waveguides,8–10 multiplexing and de-multiplexing architectures,11 diffraction gratings,12–15 active metal layers, and volume holographic elements.

Corresponding author: sjolly@media.mit.edu
We have previously proposed an active guided-wave acousto-optic device implemented in LiNbO\(_3\) for spatial light modulation in holographic display applications.\(^{16,17}\) Structurally, our spatial light modulation solution (depicted in Fig. 1) is comprised of an anisotropic waveguide on a lithium niobate substrate. Guided optical modes interact with surface acoustic waves containing holographic information launched from the RF transducer and are thereby rotated in polarization and outcoupled from the waveguide. Finally, the modulated light is incident on a reflection volume grating which acts to steer the modulated output towards a viewer. We have previously depicted a fabrication methodology for such a device based on femtosecond laser micromachining of waveguides.\(^{18,19}\) In this paper, we depict progress in fabrication of volume Bragg gratings in lithium niobate for application in light outcoupling via femtosecond laser micromachining.

2. FEMTOSECOND LASER MICROMACHINING IN LITHIUM NIOBATE

Femtosecond laser structuring of transparent media is widely used to create 2-D and 3-D profiles in refractive index within the volume of said media,\(^7\) subject to limitations imposed on resolution and achievable modulation by the diffraction-limited waist size of the focusing objective and material thresholds for densification and available dynamic range. Previous studies of femtosecond laser micromachining in lithium niobate have focused on the integration of embedded photonic structures on the surface or within the volume of the crystalline substrate, usually by means of a permanent change of birefringent refractive index via lattice densification,\(^{10}\) although techniques exploiting volumetric photorefractive modifications have also been utilized.\(^{20}\)

Figure 2. Volumetric grating structures achievable in LiNbO\(_3\) via femtosecond laser processing. (a) Volume Bragg gratings having arbitrary fringe geometries, (b) Volume Bragg gratings having optical power (e.g., spherical-beam or cylindrical-beam volume holograms), (c) Aperiodic optical structures having arbitrary modulation of refractive index at each voxel location.

Permanent refractive index modulation via densification in lithium niobate is often classified into two types of modifications: Type I, in which the extraordinary index is decreased but the ordinary index is unchanged via a femtosecond pulse train, and Type II, in which both uniaxial indices are decreased via a pulse train with pulse durations over 1 ps.\(^9\) Previous studies have indicated the feasibility of fabricating Raman-Nath and volume Bragg gratings in LiNbO\(_3\).\(^{13–15}\) Although volumetric grating structures are achievable via photorefractive recording in LiNbO\(_3\), the recording of arbitrary fringe geometries in angle and periodicity is often cumbersome due to the sometimes extreme propagation angles required of either beam in two-beam holographic recording. In contrast to optical holographic recording, femtosecond laser micromachining offers the ability to embed arbitrary fringe geometries without the need to adjust optical paths for two-beam interference, diffractive lenses having optical power, photonic crystal structures, or completely aperiodic volumetric structures in refractive index (see Fig. 2). Here, we depict volumetric grating designs applicable for use in guided-wave acousto-optic devices and describe current progress in their fabrication via femtosecond laser micromachining.
3. VOLUME GRATING DESIGN AND ANALYSIS

![Diagram](image_url)

Figure 3. Conservation of momentum in Bragg (a) transmission and (b) reflection gratings. \vec{K}_g is the recorded grating vector, \vec{k}_2 is the output wavevector, \vec{k}_1 is the input wavevector, and γ_B is the Bragg angle of the recorded grating.

The fabrication of a volume Bragg grating with desired diffractive behavior is dependent on the grating vector \vec{K}_g that dictates the input and output beams. This relationship is depicted on the Descartes sphere (shown in 2-D for simplicity) for transmission and reflection volume holographic gratings in Fig. 3. Due to conservation of momentum, the relationship $\vec{K}_g = \vec{k}_2 - \vec{k}_1$ dictates the diffracted output wavevector \vec{k}_1 for a given Bragg-matched input wavevector \vec{k}_2 and grating vector \vec{K}_g. From a geometrical perspective, the Bragg angle can be backcalculated from the grating period for a given illumination wavelength as $\gamma_B = \sin^{-1}(\lambda/2\Lambda)$.

According to Kogelnik's coupled-wave theory,21–23 we present several analyses of the the influence of overall grating thickness on device performance in both transmission and reflection geometries (Figs. 4 and 5) for LiNbO$_3$ with an average unmodulated refractive index $n_{av} = 2.28$ and assuming a maximal achievable femtosecond laser-induced index modulation of $\Delta n = 5 \times 10^{-4}$ (as is consistent with bounds reported in the literature9,10). Figs. 4 and 5 depict the influence of the angular incidence relative to the fully Bragg-matched condition on diffraction efficiency for transmission and reflection volume gratings, respectively. For femtosecond laser micromachined gratings in LiNbO$_3$, the effect of the number of grating layers (having axial thickness of 5 μm) on the diffraction efficiency of the reflection grating is depicted in Fig. 6. Note that the axial thickness used for this simulated result is consistent with those expected with typical objectives used in our experimental setup, depicted in the following section.
Figure 4. Diffraction efficiency for an unslanted volume transmission grating with $\Lambda = 10 \, \mu m$ as a function of Bragg mismatch angle for $\lambda = 532 \, nm$ illumination and $t = 50 \, \mu m$, $t = 100 \, \mu m$, and $t = 250 \, \mu m$.

Figure 5. Diffraction efficiency for an unslanted volume reflection grating with $\Lambda = 10 \, \mu m$ as a function of Bragg mismatch angle for $\lambda = 532 \, nm$ illumination and $t = 50 \, \mu m$, $t = 100 \, \mu m$, and $t = 250 \, \mu m$.
Figure 6. Influence of number of micromachined grating layers on diffraction efficiency for an unslanted volume reflection grating with $\Lambda = 10 \, \mu m$ and for $\lambda = 532 \, nm$ illumination, assuming a $5 \, \mu m$ axial resolution in the writing spot.
4. EXPERIMENTAL METHODOLOGY

The setup presented here for femtosecond laser micromachining is depicted in Fig. 7. A femtosecond beam from a Yb:KGW femtosecond laser source (Light Conversion Pharos 15W, fundamental operating wavelength $\lambda = 1030$ nm with available harmonics at $\lambda = 515$ nm and $\lambda = 343$ nm) is input to a polarizer and $\lambda/2$ plate for control of beam attenuation. The beam is input to a periscope and reflected off a beamsplitter into the entrance pupil of a microscope objective (Mitutoyo 10X NA=0.28 infinity-corrected plan apochromatic) that acts to focus the beam into the volume of the LiNbO$_3$ substrate. The sample is mounted on a computer-controlled 3-axis nanopositioning stage (SmarAct, GMBH) with 1 nm resolution and high repeatability. To control the grating exposure, interfaces to both the laser and stage are controlled via custom software that triggers the beam on while the stage is moving along the axis of a grating finger to be written, off while the stage translates between grating fingers.

A white light source is added underneath the transparent sample in order to use the objective along with a CCD camera for imaging simultaneously with writing within the medium with the femtosecond beam. This setup is depicted in Fig. 8.

For the purposes of the current experiment, we use x-cut LiNbO$_3$ wafers with thickness of 1 mm. We use the femtosecond laser source with an operating wavelength at the fundamental $\lambda = 1030$ nm, repetition rate of 100 kHz, a 2 μJ pulse energy, and with the stage translating at 2.5 mm/s while writing any particular grating finger. In all results presented here, the grating fingers are parallel to the LiNbO$_3$ c-axis.
Figure 8. Setup for femtosecond laser micromachining.
5. EXPERIMENTAL RESULTS, PROJECT STATUS, AND FUTURE WORK

Figure 9. Optical micrograph of surface grating with $\Lambda = 10 \mu m$ fabricated on LiNbO$_3$ surface.

Figure 10. Optical micrograph of volume phase grating with $\Lambda = 10 \mu m$ and thickness $t = 50 \mu m$ fabricated 150 μm below the LiNbO$_3$ surface.
At the time of this writing, we have successfully fabricated simple surface and volume transmission gratings in lithium niobate. Fig. 9 depicts an optical micrograph of a surface grating with $\Lambda = 10 \, \mu m$ and Fig. 10 depicts the top surface of a volume transmission phase grating with $\Lambda = 10 \, \mu m$ and thickness $t = 50 \, \mu m$ fabricated 150 μm below the LiNbO$_3$ surface, with layer thickness chosen to be 5 μm to correspond to a longer axial spot size. The $1/e^2$ lateral spot size emerging at the focus of the objective is measured to be 2.5 μm. Fig. 10 depicts the diffracted output from the volume phase grating when illuminated at the Bragg angle $\gamma_B = 1.5^\circ$. At the time of this writing, we have not yet observed anisotropic effects due to the polarization of the probe beam incident on the direct-written grating.

Future work on this effort will include characterization and optimization of the anisotropy of the written gratings, further optimization for diffraction efficiency, fabrication of reflection geometry volume Bragg gratings, and an analysis of the multilayered phase grating structure via a computational electromagnetic method.\footnote{24}

ACKNOWLEDGEMENTS

This research has been supported by consortium funding at the MIT Media Laboratory and by Air Force Research Laboratory contract FA8650-14-C-6571. The authors gratefully acknowledge facility use and technical assistance by the MIT Nanostructures Laboratory and the MIT Center for Bits and Atoms.

REFERENCES

