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Figure 1.  Alterego seeks to make computing a natural extension of the user's own cognition by enabling a silent, discreet and 
seamless conversation with machines and people, in likeness to the user talking to her own self.  

ABSTRACT 
We present a wearable interface that allows a user to 
silently converse with a computing device without any 
voice or any discernible movements - thereby enabling the 
user to communicate with devices, AI assistants, 
applications or other people in a silent, concealed and 
seamless manner. A user's intention to speak and internal 
speech is characterized by neuromuscular signals in internal 
speech articulators that are captured by the AlterEgo system 
to reconstruct this speech. We use this to facilitate a natural 
language user interface, where users can silently 
communicate in natural language and receive aural output 
(e.g - bone conduction headphones), thereby enabling a 
discreet, bi-directional interface with a computing device, 
and providing a seamless form of intelligence 
augmentation. The paper describes the architecture, design, 
implementation and operation of the entire system. We 
demonstrate robustness of the system through user studies 
and report 92% median word accuracy levels.  

Author Keywords 
Silent Speech Interface; Intelligence Augmentation; 
Peripheral Nerve Interface; Human-Machine Symbiosis 

INTRODUCTION 
The vision of closely coupling humans and machines has 
been advanced and re-imagined in successive iterations. 
Input devices have come a long way since punchcards and 
present day input modalities have enabled computing 
devices to become an intrinsic parts of our lives. Keyboards 
(or typewriter style input devices) replaced punch cards to 
facilitate text input on early computers. The modern age of 
mobile and ubiquitous computing ushered in the 
widespread adoption of voice inputs for communication and 
search applications.  

Natural user interfaces (NUI) including gesture-based 
inputs, touch and voice have been touted as natural 
extensions of the human persona [5,13,21–23,27]. Despite 
significant advances made, machines, input modalities and 
interactivity still exist as external artifacts to the human 
user, in an obstacle to fully realize symbiosis of humans 
and machines. 

We present AlterEgo a wearable silent speech interface that 
allows a user to provide arbitrary text input to a computing 
device or other people using natural language, without 
discernible muscle movements and without any voice. This 
allows the user to communicate to their computing devices 
in natural language without any observable action at all and 
without explicitly saying anything.  

In summary, this paper makes three primary contributions: 

1. We introduce a novel wearable architecture for a bi-
directional silent speech device. 
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2.  We outline the neuromuscular input needed for detecting 
silent speech. 

3. We demonstrate the feasibility of such silent speech 
recognition based on neural information, and demonstrate 
the utility of the device as a personal computing platform 
and interface.  

AlterEgo, allows people to privately and seamlessly 
communicate with their personal computing devices, 
services and other people, such that users leverage the 
power of computing in their daily lives, as a natural adjunct 
to their own cognitive abilities, without “replacing” or 
“obstructing” these abilities.   

BACKGROUND AND RELATED WORK 
Voice Interfaces 
Conversational interfaces currently exist in multiple forms. 
The recent advances in speech recognition methods have 
enabled users to have interaction with a computing device 
in natural language [1,12]. This has facilitated the advent of 
ubiquitous natural voice interfaces, currently deployed in 
mobile computational devices as virtual assistants (e.g- Siri 
[28], Alexa [29], Cortana [30] etc.). These interfaces have 
also been embedded in other devices such as smart-
wearables, dedicated hardware speakers (e.g - Google 
Home [31], Amazon Echo[32]), and social robots. Another 
broad category under voice interfaces are modern 
telecommunications devices for person-person 
communication (e.g - smartphones, Skype etc). Although, 
all the aforementioned platforms offer robust voice based 
interaction, they share common limitations. There are 
fundamental impediments to current speech interfaces that 
limit the possibility of their adoption as a primary human-
machine interface. We list a few here amongst others: 

Privacy of conversation: Speech is broadcasted to the 
environment by the user when communicating via these 
interfaces and therefore user privacy is not maintained (e.g - 
a phone call with another person; communicating with Siri 
etc.). 

Eavesdropping: Voice interfaces are always listening in on 
conversations, when not desired, only to be visibly 
activated later on by a specific trigger-word (e.g - 'Ok 
Google' activates Google Assistant but the application is on 
nevertheless). 

Impersonal devices: These devices are not personal devices 
and any other user can intentionally or unintentionally send 
valid voice inputs to these devices. 

Attention requiring: Current voice interaction devices have 
low usability as a device, a user cannot use a speech 
interface hands free on-the-go, which is the case oftentimes 
with immobile dedicated speech devices (e.g - Amazon 
Echo). Moreover, user proximity to the device is required 
for optimal speech recognition (telecommunications 
devices).  

Silent Speech Interfaces 
There have been several previous attempts at achieving 
silent speech communication. These systems can be 
categorized under two primary approaches: invasive and 
non-invasive systems.  

Invasive Systems 

Brumberg et al. 2010 [6] used direct brain implants in the 
speech motor cortex to achieve silent speech recognition, 
demonstrating reasonable accuracies on limited vocabulary 
datasets. There have been explorations surrounding 
measurement of movement of internal speech articulators 
by placing sensors inside these articulators. Hueber et al. 
2008 [17] used sensors placed on the tongue to measure 
tongue movements. Hofe et al. 2013 [16] and Fagan et al. 
2008 [9] used permanent magnet (PMA) sensors to capture 
movement of specific points on muscles used in speech 
articulation. The approach requires permanent fixing of 
magnetic beads invasively which does not scale well in a 
real-world setting. Florescu et al. 2010 [10] propose 
characterization of the vocal tract using ultrasound to 
achieve silent speech. The system only achieves good 
results when combined with a video camera looking 
directly at the user’s mouth. The invasiveness and 
obtrusiveness or the immobility of the apparatus impedes 
the scalability of these solutions in real-world settings, 
beyond clinical scenarios.  

Non-Invasive Systems 

There have been multiple approaches proposed to detect 
and recognize silent speech in a non-invasive manner. 
Porbadnik et al. 2009 [24] used EEG sensors for silent 
speech recognition, but suffered from low signal-to-noise 
ratio to robustly detect speech formation and thereby 
encountered poor performance. Wand et al. 2016 [26] used 
deep learning on video without acoustic vocalization but 
requires externally placed cameras to decode language from 
movement of the lips. Hirahara et al. [15] use Non-Audible 
Murmur microphone to digitally transform signals. There 
have been instances of decoding speech from facial muscles 
movements using surface electromyography.  
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Figure 2. Selection of the final electrode target areas (right) through feature selection on muscular areas of interest (left, center). 

Wand and Schultz 2011[25] have demonstrated surface 
EMG silent speech using a phoneme based acoustic model, 
but the user has to explicitly mouth the words and have to 
use pronounced facial movements. Jorgensen et al.[18] use 
surface EMG to detect subvocal words with accuracy 
fluctuating down to 33% with the system also unable to 
recognize alveolar consonants with high accuracy, which is 
a significant obstruction to actual usage as a speech 
interface. 

ALTEREGO 
AlterEgo is a wearable silent speech interface that enables a 
discreet, seamless and bi-directional communication with a 
computing device in natural language without discernible 
movements or voice input (Figure 3-4).  

We distinguish our system based on the following points:  
 
1. The first difference is the non-invasiveness of the 
approach described herein. The system captures 
neuromuscular signals from the surface of the user's skin 
via a wearable mask.  

2. The existing non-invasive real-time methods with robust 
accuracies require the user to explicitly mouth their speech 
with pronounced, apparent facial movements. The key 
difference between our system and existing approaches is 
that our system performs robustly even when the user does 
not open their mouth, make any sound and without the need 
for any deliberate and coded muscle articulation that is 
often used when using surface EMG to detect silent speech. 
The modality of natural language communication without 
any discernible movement is key, since it allows for a 
seamless and discreet interface. 

3. On a standard digit recognition test, our system achieves 
a median accuracy of 92%, outperforming conventional 
methods mentioned above amongst others. Moreover, this 
is despite the AlterEgo system not requiring any facial 
muscle movement as opposed to conventional methods that 
require the user to lip sync the words in a pronounced 
fashion. 
 

4. This leads to the fourth key point, which is the portability 
of the wearable device. The proposed device is an 
ambulatory wearable system which a user just needs to 
wear for it to function and the device connects wirelessly 
over Bluetooth to any external computing device.  
 
5. Unlike proposed traditional brain computer interfaces 
(BCI), such as head based EEG/fMRI/DOT/fNIRS, the 
platform does not have access to private information or 
thoughts and the input, in this case, is voluntary on the 
user's part. The proposed platform is robust on extended 
vocabulary sizes than traditional BCI since we propose a 
peripheral nerve interface by taking measurements from the 
facial and neck area, which allows for silent speech signals 
to be distilled without being accompanied by electrical 
noise from the frontal lobe of the cerebral cortex. 

  

 

 
Figure 3. Rendering of the AlterEgo wearable (Top). Front 
view of the user wearing the device (Bottom).
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INDISCERNIBLE SILENT SPEECH RECOGNITION 
Internal vocalization, in this text is described as the 
characteristic inner voice in humans that is usually 
noticeable while reading and can be voluntarily triggered 
while speaking to oneself [4], excluding deliberate lip or 
discernible muscle movement. This is characterized by 
subtle movements of internal speech articulators.  

Speech Synthesis and Electrophysiology 
The production of acoustic speech involves a series of 
intricate and coordinated events and is considered one of 
the most complex motor actions humans perform. An 
expression once conceived in the brain, is encoded as a 
linguistic instance mediated by areas in the brain, namely 
the Broca's area, and subsequently the supplementary motor 
area to map into muscular movements for vocal 
articulation. This cortical control for voluntary articulation 
is enabled through the ventral sensorimotor cortex which 
controls the activation and activation rate of a motor unit, 
via projections from the corticobulbar tract to the face, 
laryngeal cavity, pharynx and the oral cavity. A motor 
neuron receives nerve impulses from anterior horn cells in 
the spinal cord which are propagated to neuromuscular 
junctions, where a single neuron innervates multiple muscle 
fibers.  

The propagation of a nerve impulse through a 
neuromuscular junction causes the neurotransmitter 
acetylcholine to be released into the synapse. Acetylcholine 
binds with nicotinic receptors leading to ion channels 
releasing sodium cations in the muscle fiber, triggering an 
action potential propagation in the muscle fiber. This ionic 
movement, caused by muscle fiber resistance, generates 
time-varying potential difference patterns that occur in the 
facial and neck muscles while intending to speak, leading to 
a corresponding myoelectric signature that is detected by 
the system described in this paper, from the surface of the 
skin in the absence of acoustic vocalization and facial 
muscle articulation for speech. 

Amongst the various muscle articulators involved in speech 
production [14], we focused our investigation on the 
laryngeal and hyoid regions along with the buccal, mental, 
oral and infraorbital regions to detect signal signatures in a 
non-invasive manner. To determine the spatial locations of 
detection points, we selected 7 target areas on the skin for 
detection, from an initial 30-point grid spatially covering 
the aforementioned select regions. The selection was done 
on experimental data recorded on which we expand on in 
following sections. We ranked potential target locations 
according to the  filter-based feature ranking, evaluating 
how signals sourced from each target were able to better 
differentiate between word labels in our dataset. 
Symmetrical equivalents of target locations across the 
craniocaudal axis were ignored in order to avoid feature 
repetition. In the current iteration of the device, the signals 
are sourced as 7 channels from the following areas - the 

laryngeal region, hyoid region, levator anguli oris, 
orbicularis oris, platysma, anterior belly of the digastric, 
mentum. The finer positions of the electrodes on the skin, 
within the selected regions, were then adjusted empirically. 

  Ranking Region 

1 Mental 
2 Inner laryngeal 
3 Outer laryngeal 

4 Hyoid  
5 Inner infra-orbital 
6 Outer infra-orbital 
7 Buccal 

Table 1. Top muscle regions ranked according to the  filter 
ranking against a binary-labelled dataset, evaluated in the 

pilot user study. 

 

Signal Capture, Processing and Hardware 
Signals are captured using electrodes from the above-
mentioned target areas. In two versions of the device, the 
device houses either TPE plastic, gold plated silver 
electrodes (1.45 mm diameter conductive area), in 
combination with Ten20 (polyoxyethylene (20) cetyl ether) 
conductive paste (Weaver and Company) for reduced 
contact impedance, or passive dry Ag/AgCl electrodes (4 
mm diameter conductive area). Although both electrode 
forms can be integrated into the system, the former offer 
superior data quality. Therefore, we report experiments, 
data collection and results based on the former in this 
manuscript, as a controlled variable. A reference electrode 
is placed either on the wrist or the earlobe. We use bias 
based signal cancellation for canceling ∼60 Hz line 
interferences and to achieve higher signal-to-noise (SNR) 
ratio. The signals are sampled at 250 Hz and differentially 
amplified at 24× gain (Texas Instruments, OpenBCI). 

We integrated an opto-isolated external trigger, acting as a 
final channel stream with high voltage pulses marking 
starting and ending events of a silent phrase. Subsequently, 
the signal streams are wirelessly sent to an external 
computing device for further processing. The signals go 
through multiple preprocessing stages. The signals are 
fourth order IIR butterworth filtered (1.3 Hz to 50 Hz). The 
high pass filter is used in order to prevent signal aliasing 
artifacts. The low pass filter is applied to avoid movement 
artifacts in the signal. A notch filter is applied at 60 Hz to 
nullify line interference in hardware. The notch filter is 
applied, despite the butterworth filter, because of the gentle 
roll-off attenuation of the latter.  
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Figure 4. Architecture of the AlterEgo silent speech recognition model.

 

 
Figure 5. Output of activation maximization on the classes 1-5, 
to visualize input signals that maximize the corresponding 
output activations. 

We separate the signal streams into components through 
Independent Component Analysis (ICA) to further remove 
movement artifacts. The signals are digitally rectified, 
normalized to a range of 0 to 1 and concatenated as integer 
streams. The streams are sent to a mobile computational 
device through Bluetooth LE, which subsequently sends the 
data to the server hosting the recognition model to classify 
silent words. This protocol is in consideration of data  

 

transfer speed requirements and power requirements for the 
system to potentially scale as a wearable device.  

Data Collection and Corpus 
We created a data corpus comprising datasets of varied 
vocabulary sizes. Data was collected during two main 
phases. First, we conducted a pilot study with 3 participants 
(1 female, average age of 29.33 years) to investigate 
feasibility of signal detection and to determine electrode 
positioning. The preliminary dataset recorded with the 
participants was binary, with the world labels being yes and 
no. The vocabulary set was gradually augmented to 
accommodate more words - for instance, the phonetically 
dissimilar words reply, call, you and later formed another 
dataset. In sum, the data collected during the study has ~5 
hours of internally vocalized text.  

In the second phase, we set out to create a data corpus to be 
used to train a classifier (same 3 participants). The corpus 
has ∼31 hours of silently spoken text recorded in different 
sessions to be able to regularize the recognition model for 
session independence. The corpus comprises of multiple 
datasets (Table 2). In one category, the word labels are 
numerical digits (0-9) along with fundamental mathematical 
operations (times, divide, add, subtract and percent) to 
facilitate externalizing arithmetic computations through the 
interface. We expand on other dataset categories in later 
sections. We use the external trigger signal to slice the data 
into word instances. In each recording session, signals were 
recorded for randomly chosen words from a specific 
vocabulary set. This data is used to train the recognition 
model for various applications, on which we expand on in 
following sections.  

Session 1B: Multimodal Interfaces IUI 2018, March 7–11, 2018, Tokyo, Japan

47



 
Figure 6. Bone conduction aural output of the AlterEgo system, making it a closed-loop input-output platform. 

Silent Speech Recognition Model 
The signal undergoes a representation transformation before 
being input to the recognition model. We use a running 
window average to identify and omit single spikes (> 30 
𝜇𝑉above baseline) in the stream, with amplitudes greater 
than average values for nearest 4 points before and after. 
We use mel-frequency cepstral coefficient based 
representations to closely characterize the envelopes of 
human speech. The signal stream is framed into 0.025s 
windows, with a 0.01s step between successive windows, 
followed by a periodogram estimate computation of the 
power spectrum for each frame. We apply a Discrete 
Cosine Transform (DCT) to the log of the mel filterbank 
applied to the power spectra. This allows for us to 
effectively learn directly from the processed signal without 
needing to hand-pick any features. This feature 
representation is passed through a 1-dimensional 
convolutional neural network to classify into word labels 
with the architecture described as follows. The hidden layer 
convolves 400 filters of kernel size 3 with stride 1 with the 
processed input and is then passed through a rectifier 
nonlinearity. This is subsequently followed by a max 
pooling layer. 

This unit is repeated twice before globally max pooling 
over its input. This is followed by a fully connected layer of 
dimension 200 passed through a rectifier nonlinearity which 
is followed by another fully connected layer with a sigmoid 
activation. The network was optimized using a first order 
gradient descent and parameters were updated using Adam 
[19] during training. The network was regularized using a 
50% dropout in each hidden layer to enable the network to 
generalize better on unseen data. The error during training 
was evaluated using a cross entropy loss. The neural 
network was trained on a single NVIDIA GeForce Titan X 
GPU. We use this network architecture to classify multiple 
categories of vocabulary datasets.  

AURAL OUTPUT 
Silent speech recognition of the AlterEgo system attempts 
to open up a unique opportunity to enable personalized bi-
directional human-machine interfacing in a concealed and 
seamless manner, where the element of interaction is in 
natural language. This potentially facilitates a 
complementary synergy between human users and 
machines, where certain tasks could be outsourced to a 
computer while the computation still seeming as "intrinsic" 
to the human user. After an internally vocalized phrase is 
recognized, the computer contextually processes the phrase 
according to the relevant application the user accesses (e.g - 
An IoT application would assign the internally vocalized 
digit 3 to device number 3 whereas the Mathematics 
application would consider the same input as the actual 
number 3). The output, thus computed by the application, is 
then converted using Text-to-Speech and aurally 
transmitted to the user. We use bone conduction 
headphones as the aural output, so as to not impede the 
user's sense of hearing.  

WEARABLE FORM DESIGN 
There are a number of design aspects that were considered 
with the intention of making the wearable system robust, 
and usable in a routine setting. Firstly, it is imperative for 
the electrodes to not shift position so as to maintain signal 
consistency. Secondly, it is desirable for the electrodes to 
maintain position on the target areas between multiple 
sessions of the user wearing and not wearing the device. 
Thirdly, while the electrodes must not move to stray forces, 
it is desirable for the positions to be adjusted to the 
positions of different users via one device that could be 
worn by multiple users. To that end, the form factor of the 
device is designed as a wearable that is worn around the 
back of the head, with extensions landing on the face to 
record signals from the afore-stated target areas (Figure 4). 
The band is 3D printed using photopolymer resin with a 
brass rod supporting it structurally, so as to maximize skin-
electrode friction and minimize relative movement. The 
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extensions are brass supports that provide rigidity to 
support electrodes while also being amenable to deliberate 
adjustment. Furthermore, the extensions are designed to 
attach to the frame in a modular manner such that specific 
extensions and electrodes could be pulled out for further 
experimentation.  

APPLICATIONS 

The AlterEgo system attempts to facilitate personal, 
discreet and seamless human-machine communication. In 
this section, we briefly present initial application 
explorations with the AlterEgo interface and demonstrate 
its utility as a personal cognition augmentation platform.  

The current prototype implements modular neural networks 
in a hierarchical manner to accommodate for simultaneous 
accessibility to applications. The applications are initiated 
by internally vocalizing corresponding trigger words, for 
instance the word IoT for initiating wireless device control 
using the interface. At present, the vocabulary sets are 
modeled as n-gram sequences, where the recognition of a 
specific word assigns a probability distribution to 
subsequent vocabulary sets (Table 2).  

The probability  can be assigned to a vocabulary set  
based on previous recognition occurrences  to   as   

. In the current setup, the 
probability  is assigned to vocabulary sets meant for 
specific applications, in a Markovian dependency 
arrangement,  where each set is detected by a convolutional 
neural network. This hierarchy reduces the number of word 
possibilities to be detected within an application, thereby 
increasing the robustness of the current system. 

The applications of AlterEgo can be classified under three 
broad categories: 

Closed-loop interface 
This scenario describes silent speech interface with a 
computing device where specific computer applications 
respond to internally vocalized queries through aural 
feedback, thereby enabling a closed-loop, silent and 
seamless conversation with a computing device. A few 
example implementations are described in this section. 

The AlterEgo system allows the user to externalize any 
arithmetic expression to a computing device, through 
internally vocalizing the arithmetic expression and the 
computer subsequently relaying the computed value 
through aural feedback. For instance, the user could 
subvocalize the expression 2581 times 698 divide 2 add 13, 
and the application would output the answer 900782 to the 
user, through bone conduction headphones. The device can 
be currently used to issue reminders and schedule tasks at 
specific times, which is aurally output to the user at 
corresponding times, thereby providing a form of memory 
augmentation to the user.  The device also enables the user 

to access time using the interface, by silently 
communicating world clock and the name of a city, within a 
trained vocabulary set (Table 2). 

Through such an interface, we explore if artificial 
intelligence (AI) could be democratized, and could instead 
act as an adjunct to human cognition in a personalized 
manner. As a demonstration of this, we implemented 
human-AI collaborative chess and Go through bi-
directional silent speech, where the user would silently 
convey the game state and the AI would compute and then 
aurally output the next move to be played.    

Open-loop interface 
The interface could be used purely as an input modality to 
control devices and to avail services.  

An example application is an IoT controller that enables the 
user to control home appliances and devices (switch on/off 
home lighting, television control, HVAC systems etc.) 
through internal speech, without any observable action.  
The interface can be personally trained to recognize phrases 
meant to access specific services. As an example, the 
internally vocalized phrase Uber to home could be used to 
book transport from the user’s current destination using the 
interface. The interface could also be used as a silent input 
to Virtual Reality/Augmented Reality applications. 

Human-human interface 

The device also augments how people share and converse. 
In a meeting, the device could be used as a back-channel to 
silently communicate with another person. In the current 
instantiation of the device, the user can internally 
communicate 5 common conversational phrases to another 
person through the interface (Table 2). This could be 
naturally expanded with further user training. 

We have created an environment for the device where 
applications could be developed catered to specific tasks. 
The environment asks the user to silently communicate the 
keywords of interest which is used for training for the 
application. In addition, the system potentially allows for 
peripheral devices to be directly interfaced with the system. 
For instance, lapel cameras and smart-glasses could directly 
communicate with the device and provide contextual 
information to and from the device.  

EXPERIMENTAL EVALUATION 
We sought to evaluate the word accuracy (WAcc) of the 
silent speech recognition model across multiple users, 
which formed our core experiment for the multi-user study.  
To evaluate the robustness of the platform, we recruited 10 
participants (6 female) between 19 and 31 years old (𝜇 = 
23.6 years) to participate in experiments. None of the 
participants had any prior experience with the system 
evaluated in the study. We use the arithmetic computation 
application as our basis for accuracy evaluation. 
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Application Initializer Vocabulary Set 

Arithmetic 0-9, multiply, add, subtract, divide, 
percent  

IoT light on, light off, fan on, fan off 0-9 

World Clock 
Amsterdam, Beijing, Boston, Delhi, 

London, New York City, 
Johannesburg , Toronto 

 

Calendar previous, next  

Chess a-h, K, Q, R, N, 1-8  

Reply 0-9, finish hello how are you, call you later, what’s up, yes, no 

 

Table 2. Hierarchical organization of the vocabulary sets. 

 

Figure 7. Examples of some applications or use cases: 1. Calculating totals during shopping (mathematics) 2. Controlling IoT 
devices 3. Controlling media 4. Temporal augmentation e.g. setting calendar meetings, current time, etc. 5. Responding to phone 
calls (Receive/reject)  

The experiment was conducted in two phases.  

First, we collected user silent speech data and evaluated 
word accuracy on a train test split. Second, we assessed the 
recognition latency of the interface by testing live inputs on 
the model, trained using the previous step. 

In order to help the users understand silent speech, we 
showed the user a piece of text and asked the user to read it 
like (s)he silently read online articles, i.e. read to oneself 

and not out loud.  For each participant, we showed them a 
total of 750 digits, randomly sequenced on a computer 
screen, and instructed the users to ‘read the number to 
themselves, without producing a sound and moving their 
lips’. The digits were randomly chosen from a total of 10 
digits (0 to 9), such that each digit exactly appeared 75 
times. The data was recorded for each user with the trigger 
voltages marking word-label alignments.   
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Figure 8. Word accuracy (WAcc) of the silent speech recognition model evaluated on 10 users, using 10 training testing splits of the 
arithmetic computation dataset. The edges of boxes represent 1st and 3rd quartile respectively, and the whiskers extend to 100% 
coverage. 

Quantitative results 
The user data was split according to an 80/20 random split 
for training and testing for each user. The word accuracies 
for each user were recorded for 10 runs of training and 
testing. Figure 8 shows the word accuracies for each user 
and each run. The average accuracy over all runs for all the 
users is 92.01%. We conducted live testing for each user to 
observe the latency of the system for real-time predictions. 
The latency refers to the computational latency of the silent 
speech speech system as measured from the end of an 
utterance until the corresponding transcription is produced. 
The average latency for the 10 users was 0.427 seconds 
(3sf).  

DISCUSSION 
The results from our preliminary experiments show that the 
accuracy of our silent speech system is at par with the 
reported word accuracies of state-of-the-art speech 
recognition systems, in terms of being robust enough to be 
deployed as voice interfaces, albeit on smaller vocabulary 
sets. The promising results from the current interface show 
that AlterEgo could be a step forward in the direction of 
human-machine symbiosis. We plan to conduct further 
experiments to test the system for an augmented vocabulary 
dataset in real-world ambulatory settings.  

The concept of human-machine symbiosis has been 
suggested by several, such as Engelbart [7,8], Licklider [20] 
and Ashby [2,3] to propose the combination of human and 
machine intelligence as a goal to be pursued and as an 
effective computational strategy as opposed to either human 
or machine intelligence acting independently. Recently, 

there have been several advances in the area of AI/machine 
intelligence, prompting anxiety with respect to 
consequences for human labor and societies [11]. The 
current viewpoint commonly places machine and human 
intelligence at odds.  Through the AlterEgo device, we seek 
to move in the step to couple human and machine 
intelligence in a complimentary symbiosis. As smart 
machines work in close unison with humans, through such 
platforms, we anticipate the progress in machine 
intelligence research to complement intelligence 
augmentation (IA) efforts, which would lead to an eventual 
convergence - to augment humans in wide variety of 
everyday tasks, ranging from computations to creativity to 
leisure. 

FUTURE WORK 
There remain many avenues for future work. In particular, 
we identify the following key future tasks for our silent 
speech device: 

1. Collect more data to develop a more generalized multi-
user silent speech recognition model: We aim to develop a 
generalized multi-user system that is user-independent, but 
can also be tuned and personalized for each user when they 
start using the device.  

2. Extend the system to include a broader vocabulary of 
words: In the current instantiation, we implemented 
accessibility to multiple vocabulary sets simultaneously, 
albeit on limited data. Our experimental evaluation was 
based on an arithmetic computation application. We plan to 
augment our recognition models to accommodate for a 
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larger dataset, and plan to follow this with thorough multi-
user longitudinal accuracy tests of our system. 

3. Test the system in real-world ambulatory settings: Our 
existing study was conducted in a stationary setup. In the 
future, we would like to conduct longitudinal usability tests 
in daily scenarios. 

CONCLUSION 
Silent speech entails that the user communicates with the 
device by internally talking to oneself instead of actual 
speech articulation. We akin this to reading something to 
oneself without moving one's lips, producing an audible 
sound and without any discernable action.  

Silent speech interfaces allow the user to communicate with 
computers, applications and people as seamlessly as they do 
through speech interfaces (telecommunications devices, 
speech based smart assistants, social robots etc.), but 
without the overhead of saying things out loud. As a result, 
silent speech interfaces are more private and personal for 
each user, and do not conflict with the existing verbal 
communication channels between people. We envision that 
the usage of our device will interweave human and machine 
intelligence to enable a more natural human-machine 
symbiosis that extends and augments human intelligence 
and capability in everyday lives. 
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